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Information Capacity of the Stationary Gaussian Channel

I. INTRODUCTION

Information capacity of the continuous-time stationary Gaussian channel

(per unit time, as transmission time T -4 w) has been a problem of much

interest since the early days of information theory. Results date back to

Shannon's 1949 paper [12]. which contains an analysis of the band-limited

channel. The treatment given in Callager's 1968 book [6] is commonly

referenced as "the" solution to the capacity problem. In fact. however, the

class of channels that fit the model of '6] is quite limited, due to the

nature of the constraints that are applied. These constraints eliminate from

consideration a very large class of channels that can be important for

applications.

The present paper contains an analysis of the capacity problem that

applies to those channels not fitting the model used in Gallager's book [6].

The development is also quite different from that of [6]; it is based on the

results of [3]. It will be seen that the treatment given here provides a

desirable generality on the class of transmitted signals which is not present

in previous treatments.

The model of the SOC (stationary Gaussian channel) is given by

Y(t) = X(t) + Z(t), t E IR = (-c.w). (1)

where X = {X(t)}, Y = {Y(t)} and Z = {Z(t)} represent the channel input.

output, and noise, respectively, Z is a stationary Gaussian process, and X is

a stochastic process independent of Z. All stochastic processes mentioned in

this oaper will be assumed to be measurable and to have zero mean.
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Shannon [12] (see also Fano [5. Chap. 5] and Pinsker [10]) studied the

capacity per second of the SGC. defined by

C(Vf) = sup lim 1 IT(X.Y ) .
XCY T- TT

T T
where IT(X.Y) = I(X0.Yo) denotes the mutual information between the input

T T
X0 = {X(t): 0 t < T} and the corresponding output YO. and the supremum is

taken for all admissible inputs X = {X(t)} E Y". The class 91 of admissible

inputs is given P follows. Civon P vratlonary Gaussian procer w - fwf.lx

with a spectral density function (SDF) fW and a constant P > 0, an admissible

input is a wide-sense stationary process X having a SDF fx satisfying

f ( ) a< iP
f w(X)

Formulas for C(V9) have been given for special cases ([5],[10],[12]). However,

it is known that there are some mathematical difficulties to derive the

formulas. In this paper we shall derive the capacity (see (16) and (22)) in a

rigorous way, assuming appropriate conditions on the processes W and Z. These

assumptions imply, in particular, that the reproducing kernel Hilbert space

(RKHS) of the process W is the same as the RKHS of Z.

In some previous works ([10].[12] e stationarity of inputs is

assumed. To remove the assumption of stationarity, we introduce a class 31 of

admissible inputs which we show to contain Vf under rather mild assumptions.

Denote by 11-11WT the norm of the RKHS HWT corresponding to the process

T
0 = {W(t): 0 t < T}. The class A is the set of all processes X satisfying

I 11

lim I E[IIXII2 ,] P. (2)
T-40T 0W,] P

Under modest assumptions, it will be shown that the capacity C(31). defined in
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the same manner as C(f). is equal to C(f). This means that, even if we do not

require the stationarity of inputs, the capacity is attained in the class of

stationary inputs.

A constraint similar to (2) has been considered by Baker [2],[3]. He

determined the capacity

SUP IT(X'Y)
Txo

for a fixed time T. where the supremum is taken for all processes XT

satisfying

T2
E[ IIXoIIw T] P. (3)

This result for CT is essential for the derivation of our main results.

The average power constraints on the input studied in some previous works

are given in terms of the noise process Z. The constraints (2) and (3) are

stated in terms of a process W which is different from Z. The SGC subject to

(3) is called a mismatched channel ([2],[3]). On the other hand, the SGC is

called a matched channel if W = Z. The capacity of the matched Gaussian

channel for a finite time interval ie known to be equal to ' P ([1]. [7]) and

is not increased by feedback for a large class of channels [7].

In [6, Chap. 8], Callager gives a comprehensive treatment of this

problem, which he attributes to Holsinger. As mentioned above, his setup and

assumptions are different. Relations between the Holsinger-Gallager result and

those obtained here will be discussed following the statement of ou, main

results. It will be shown that (when fw and f are rational) the assumptions

of [6] are much more restrictive than those given here.

The precise definitions of the capacities are given in Section II. In

Section III we give the statements of our main results, with some necessary

lensas given in Section V. and proofs in Section VI. Section IV contains a
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discussion of these results, and comparisons to previous work.

When b3 h f and fz are rational. the results given here and those of [6]

provide a complete solution to the information capacity problem.

II. PRELININARIES

A basic assumption to be used throughout this paper is that the

constraint is given in terms of a covariance function rW defined by a spectral

density function f W Moreover, the Gaussian noise process Z is assumed to be

stationary with spectral density function fz and associated covariance

function rZ. The integral operator in L2[OT] with kernel rZ (resp., rW) is

denoted by RZ,T (resp., RW,T). Since rZ and rW are both continuous, the

reproducing kernel Hilbert space (RKHS) defined by each covariance function

for the parameter set [O.T] is isometric to the range of the (positive) square

root of the associated integral operator in L2 [O.T] (see, e.g., [4a]); we use

the two spaces interchangeably, noting that the RKHS is a space of functions,

while the range of the square root of the associated integral operator is a

space of equivalence classes. It should be noted, however, that since we work

with probabilities on the Borel sets of L2 [OT], letting T -+ -, the range of

the square root operator is the mathematically-correct definition. In order

2 2- 2-
to have a finite value of EXI w . it is necessary [1] that RX. T -

where LT is a trace-class operator with eigenvalues {Tn(T), n > 1). a ,d then

EIIXIIT : Trace Lr = I T_(T). (4)

We shall a!o assume that the covariance function rZ of the stationary

noise process Z is given by a spectral density function fZ:

rz(ts) A EZ(t)Z(s) = fe (t-S)fZ()dX.

LISS 39-SGC - 10/9/89 - 4



In this paper we consider the following classes of admissible input

signals.

Definition 1 (Constraint on inputs):

T - T T(1) 3T M %(n) (T > C, P > 0) is the set of all X0  {X(t): 0 t < T}

such that the sample paths of belong to HW, with probability one and

E[ 1xT 12
IIXoIIwT] PT. (5)

T

(2) 3 = %(P) is the set of all X = {X(t)} such that XE HWT for all T > 0

with probability one and

E- T p(2i rT- IIXOIIWT] P  (6)

(3) 5P -f VW(P) is the set of all wide-sense-stationary processes X = {X(t)}

with SDF fx such that fx'fW is bounded and

AE
x } dX 2P. (7)fwCx)

Let f and 17 be random variables or stochastic processes with patns in an

appropriate space and denote by pL and in the induced probability

distribution of f and the joint distribution of f and n7, respectively. The

mutual information I(fr) between f and n1 is defined by

I(ffn} A f log

if w is absolutely continuous with respect to the product measure JxN X,

where du- /dp qi is the Radon-Nikodym derivative; otherwise I(f.n) is

, n f 71

infinite. Denote by I=T(X.Y) I(XoYoT the mutual information between the
T T

input Xand the corresponding output YO of the SGC, and define the mutual
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information I(X.Y) per second by

I(X.Y) lir I
T--T

if the limit exists. In order to be consitent with past work, particularly

[1] - [3]. the induced measures are defined on L2 [O.T] for each fixed T.

The definition of capacity used in this paper is the mutual information

version. Thus, the capacity of the SGC is the supremum of IT(X.Y) or T(X.Y)

taken over all admissible inputs X. As is well-known, the information

capacity is an upper bound on coding capacity.

Definition 2 (Capacity of SGC):

(1) cT =  (p) 4 sup (L IT(X'Y) X C %(P)). T > 0.

-T
(2) C SECW(P) lim C (P).

(3) C(3) - CW(P:3) 4 sup -m - ITP

{lim T TyXY): X C E )
A -1

(4) C() -CW(P;Y) sup (lrm i Iw(P)}= 4 TIT(X.Y): X C .WP)

The capacity CT has been determined by Baker ([2].[3]) for a general

Gaussian channel, where W and Z are not necessarily stationary.

In order to state and prove our main results, we need some properties of

mutual information.

Lemma I (see [1]): Suppose that the input X of SOC (I) is a Gaussian process.

Then following conditions (a) - (c) are equivalent.

(a) IT(XY) < _.

(b) The sample paths of XT belong to with probability one.

(c) The operator R 2 TIRX.TRZ 2  is of trace class.

LT .39-SOC - 10/9/89 - 6



If these conditions are satisfied, then IT(XY) is given by

IT(X.Y) = 1 n log(' + Tnn--I

where Tn(T). n = 1.2.... are eigenvalues of RzTRX T R ,[ ,

In the case where the input X is also a stationary Gaussian process.

there have been various works on the mutual information (e.g.,

[5].[9],[lI].[12]). A "well-known" formula of the mutual information per

second is

I(XY) L - logi +-AdX.(8I + fz(?~) .

It is known that there are some mathematical difficulties to derive (8)

rigorously. Pinsker [11] proved (8) under some assumptions. Here, for later

use, we restate some of Pinsker's results related to (8). We note by F the set

of all SDF's f(X) which have the form f = p(l - p) with a rational SDF p and a

measurable function 'p such that 0 qp(X) < 1 for all X E OR and

f~Ilog(l-p(X))IdX < -. A stationary Gaussian process is said to be

information regular it iim i(x ,XT) . Ncezsary &isd sufficient conditions

for information regularity are given in [8]. For example, if the SDF of X is

ration l, Lhen X is information regular.

Lemma 2 [11 (Chap. 10). 9]: Let the input X be a stationary Gaussian process

with SDF ix(x). Then

1ITXy L f log[ X(a) lir 1 1- o_

(a MT 11(XY) W+T--

(b) If fX E F or fy C F, then (8) is true;

(c) If X or Y is information regular. then (8) is true.

LISS 39-SOC - 10/9/89 - 7



For later use, we denote by A the class of all pairs (X.Z) of input X and

noise Z for which (8) holds.

It is known (e.g.. [1]) that if X and X = {X(t)} have the same covariance

function and X is Gaussian then IT(X.Y) IT(X.Y). where Y is the output

corresponding to X. Noting (4) we know that the constraints (5) and (6)

involve only covariance functions. Thus in order to find the capacity of the

SC we consider WL)G only Gaussian input signals.

We now consider the SGC (1) under the various constraints given in the

preceding section.

Define a constant 6 by

fz(X)]
+ inf {a: r[a - minta. fzx)] dX = } (9)

Roughly speaking, 1 + 0 = lim fz(X)/fw(X) if fw(N) and fz(X) are smooth

functions. The SDF fz of the noise process Z can be written in the form

fz= (1+0)fw(1 + a) = (l+0)fw(1 + a+)(1 + a). (10)

A Awhere a+(X) = max(a(X).O) and a_(X) = min(a(X).O). We assume that -1 < 0 < -

and

I + a_(X) aO , X IR. (11)

where a0 > 0 is a constant.

For ease of notation, o+ and a- *111 be used in the proofs. However, in

the statements of our main results a will be replaced, using the following

equality:
f Z Ia_(N) = 7-)lo X E A

fW 1+0
= 0 otherwise

LISS 39-SOC - 10/9/89 - 8



where A = {X: fz(,) ( (I+8)fw(X)}. Note that (11) is equivalent to

(f z/ fw)()).

IIT. MAIN RESULTS

We introduce auxiliary stationary Gaussian processes V = {V(t)}.

U = {U(t)) and U(') = {U(6)(t)} (e > 0) as follows. The process V is

independent of U and U(EQ and these processes have SDF's

fV(X) = fw(x)[1 + a+(X)], (12)

fu(X) = -fw(x)[1 + a+(X)]ac(X), (13j

fuW(X) -fw(x)(1 + %(X))a-N,

respectively, where o(e) A a_(X)l .(X) for X C IR with the indicator

function I[le] of a set r -e]. Note that f = O(fv - fU ) and consequently

RZ. = ((RV T - RU.T). (14)

If the formula (8) is valid for all Gaussian inputs X E Vf, then the

capacity C(V) would be equal to

r(P} sup f log I + fz()d (15)

where the supremum is taken for all SDF's f satisfying

I: f(I dX 2-0.

Using the so-called water filling method (cf. [5].[6]) we can determine F(P).

Lemma 3: Let A = (A: fz(X) ( (l+o)fw(X)}-

I. If P -fAI + 0 - z() then

LISS 39-SGC - 10/9/89 - 9



F(P) = I fAlog (1+0)TW(N )]I dX + 2(l+ ) + 4(10) A ) dX. 16a)

II If P fA I + 0 - z(N)]dX. then

1-P log [( l+)A(P). W ()d L
4(P = JA1 f z)d 

kb

where A, = (X: fz() (l+)A(P)fW()} and A(P) I is uniquely defined by

p 1  (l+O)A(P) - . X)] C. (17)27 A, I f A1

In Part I. F(P) 2 P/[2(1+e)]. In Part II, F(P) P/[2(1+9)A(P)] P/2(1+0).

Theorem 1: (a) Assume that

fz----{X} I 9 &N (19)

Iw(P) C 3(P) (20)

and
(aU,V) C for sufficiently small a > 0 (21)

are fulfilled, where aU = {aU(t)}, then all capacities per second coincide and

are equal to F(P):

CW(P;Vi) = 1CW(P;3,) =Cw(P) =CV(P) = F(P). (22)

(b) Assume that

f [ + -a0 z X ) L \ < (23 )

If (20) is satisfied and

(aU().V) E A for sufficiently small e > 0 and a > 0. (24)

then (22) holds.

Theorem 1 is derived from the following theorem.

LISS 39-SGC - 10/9/89 - 10



Theorem 2: Following (C.1) - (C.5') holds,

(C.1) F(P) CW(P;Yf).

(C.2) If (20) is satisfied then

Cw(P:Y') wPA'

(C.3) EW(P;5) ECw(P+&). e > 0.

(C.3') If Cw(P) is continuous in P. then

(C.4) wmP) vCP).

(C.5) Under condition (19). if (21) is satisfied. then

GV(P) = r(P). (25)

(C.5') Under condition (23). if (24) is satisfied, then (25) holds.

As one can see, (20) and (21) are key conditions for our assertion (22).

Note that condition (20) is equivalent to

lim E[1X TWT] 2? 2
3 dX. X E w(P). (26)T.4 2T 0 J - fw( ))

If (8) is true in general, then (21) holds. Although we do not ha~e a proof.

it is expected that (26) and (8) (or (20) and (21)) can be shown, so that (22)

can be true under rather moderate conditions. We can give some sufficient

conditions for (20) and (21).

Theorem 3: I. Suppose that (19) is satisfied.

(a) If f E F. then (20) is true.

LISS 39-SGC - 10/9/89 - 11



(b) In addition to fw E F. let fZ be continuous and fz WX)

0( -2 ) as X -# -. Then (21) is true and (22) holds.

II. If f and fz are rational, then (19) is satisfied and (22) holds

Moreover. related to (20). the following theorem may be of interest.

Theorem 4: Every stationary process in 3w(P) belongs to Yw(P ) .

IV. DISCUSSION: RESULTS FOR RATIONAL SPECTRAL DENSITIES

In this section, we compare the results of Section III with those given

in Section 8.5 of [6]. In order to clarify the comparison, we shall assume

that f and f are rational. Equations (19). (20). (21), and (22) then hold,

according to Theorem 3, and all capacities are equal to F(P) as given by (16).

The model used in [63 is as follows. The initial message process X1

satisfies EJoXl(t)dt PT for every T > 0. The transmitted signal, X, is

obtained by passing X through a linear filter with transfer function H. The

assumption is that IH(X)1 2/fZ < co < -. all X E IR, and fW IH(N)I 2 dX < -. The- fz(X)

capacity is defined as lim CT(P)/T, where CT(P) is the capacity for the
T-00

observation interval [OT].

To put this model into our context, we first note that fw(N) = IH(X) 2.

X C IR. Since all capacities are equal when f and fz are rational, we can

assume that X1 is wide-sense stationary, with spectral density f1 ' so that

YX ) = fl(N)IH(X)12 for X E R.

The assumption that 1H12 /fz is bounded and integrable implies that the

RKHS of fW is a proper subset of the RKHS of fz That is, y in 2 ) belongs

to the RKHS of f if and only if f,- dX (0, where ^ is the L Fourier

LISS 39-SGC - 10/9/89- 12



transform of y. Thus, f lYXi).2L z X)  =f lY-X)1 2  - c0 f CX)L- . so

that y belongs to the RKHS of fz' The converse inclusion cannot hold; the

function h with Fourier transform H belongs to the RKHS of Z. but not to that

of W.

One of our assumptions is that -1 < 0 < -, where I + 0 is the infimum

over all positive constants a satisfying

[Ca - min~a. f }X)dX =U

If fw/fz is integrable and bounded, then fz/fW- as IXI - . and so =.

o = O is equivalent to the RKHS of W being strictly contained in that of Z. If

f z/f is integrable, then 0 = -1; this is equivalent to the RKHS of Z being

strictly contained the RKHS of W. In fact. -1 ( 0 < - is equivalent to

equality of the RKHS of W to that of Z; we omit the proof.

If the RKHS of W is not contained in that of Z. then CT(P) = for every

T ) 0. by the results of [3]. Thus, the results of this paper and those of

Section 8.5 of [6] together exhaust all cases for which the capacity is

finite, and the problems treated do not overlap, when f and fz are rational.

From an operational viewpoint, the model used in this paper may be

preferable to that used in [6]. That is, one might expect to attempt to limit

the transmitted signal to some part of the noise band, defined by a linear

filter with transfer function H1. This would be done by filtering the received

waveform. The effective noise then has spectral density fzIH 1 12. The trans-

mitted signal has effective spectral density fxIH1 12 . In order to provide the

maximum amount of information, one would then wish to have the spectral den-

sity fx be such that the signal sample paths, which are from the process with

spectral density fxIH12 . use as much of the available bandwidth as possible.

In essence, this means that the RKIIS of fxlHl 2 should equal that of fzIHl 2 .

LISS 39-SGC - 10/9/89 - 13



This would require that f and f have the same RKHS. This cannot be achieved

with the model of [6]. whereas it is included in the model used here. It can

be seen that the model of [6] limits the received signal to a relatively small

part of the frequency region occupied by the effective noise process.

For example, if the effective noise at the receiver is described by a

rational spectral density f such that fz{X) = I^ 2 p for JXJ -+ -. then the

model of [6] requires that fX(X) = 1^ 4p as lXJ -* -. The model used here

permits fx(X) = I/x2 p as lXI -+ -. In terms of signal sample paths, the sample

paths of the signal process under the model of [6] would be required to be

4p-differentiable, while under the present assumptions, the signal sample

paths need only be 2p-differentiable.

Thus, when f and f are rational, we conclude the following:

(1) The problem treated in Section 8.5 of [6] and the problem treated here

exhaust all situations where the capacity is finite.

(2) The problem treated here does not overlap with the problem treated in

[6].

(3) The model treated here appears to have some advantages over the model of

[6]. from an operational viewpoint.

We now summarize our main results for the case where f and fZ are

rational, and include the main result given in [6] and the case 8 = -1 in

order to cover all possible solutions.

Theorem 5. Suppose that fW and fZ are rational. Then the capacity with the

input process required to be stationary is the same as the capacity without

this restriction: Cw(P;Vf) = Cw(P;3). For -1 0 8 , the value of the

capacity is as follows.

LISS 39-SGC - 10/9/89- 14



1. 9 = -1. In this case Cw(P;.) = . T(P) = * for every T > -. and this

holds with the additional assumption that xT is a one-dimensional

process.

2. -1 < < -. Let A= {X: fz(X) < (1+)fw(X)).

I. I + 0 - X) d, thenI' If P i
If P X) +8-+0){X)]d

Cw(P; ) -- fAlog[(1+0) (N) dx 2(I+8) + 4w(1+6) fA[P) - (++ )+dX.
1 +EA [1 fzf-

II. If P f I + A -, .X)Id. then

-~ 1 r Wi
E.W (P:3) =_f Al log I(I+)A(P) fdX where

A1 = {X: fZ(X) (1+e)A(P)fw(X)} and A(P) 1 is uniquely defined by

1 L f lo[(1+0)A(P) - ))\.

In Part I, C(P;O) 2 P/[2(1+6)]. In Part II,

CW(P;5) P/[2(1+6)A(P)] P/2(1+0).

3. 0=w. Then (6]

E( =--YLfA log IB(P)--(x) I d'.
-4 A2  fzJ

where A2 = {X: fZ(X) B(P)fw(X)} and B(P) is uniquely determined by

p fAzX)C\

P 'JA2 [B(P)- f )Jdx.

Moreover, in part II of 2) and in 3). capacity can be attained with a

stationary Gaussian signal process X with spectral density fx" For Part II of

2). fx is defined by

fx(N) = (1+0)A(P) - [fz/fW](N) A in A1

= 0 otherwise.

LISS 39-SGC - 10/9/89 - 15



For 3), fx is defined by

fx(X) = B(P) - [fz/fw](x) X in A2

= 0 otherwise.

In considering Theorem 5. it can be seen that II of Part 2) is quite

similar to the Holsinger-Gallager result given in Part 3); in fact. Part 3)

can be formally obtained by substituting B(P) - (I+0)A(P) in II. To gain

insight into this, one can compare these results with those contained in

Theorem 3 and Corollary 4 of [3]. Specifically, Part I above should be

compared with Part (a) of Theorem 3 in [3]; II of Part 2) above should be

compared with Part (b) of Theorem 3 in [3]; and Part 3) should be compared

with Corollary 4 of [3].

The question of attaining capacity (in particular, by a stationary

Tprocess) in I of Part 2) is still open. For any finite T. Cw(PT) cannot be

attained when the conditions of Part I are satisfied (see Theorem 3(e) of

[3]).

V. LEMAS

In this section we shall give several lemmas needed to prove our main

results. Proofs of the lenms will be given in the Appendix.

Hereafter, for brevity. I signifies 1n= and f signifies fo unless

noted otherwise.

We define an operator ST on L2 [0,T] by

Al 2~ (27)
ST = 1 RVTRZ.TRV.TI

where I is the identity operator.

Lemma 4: Suppose that the condition (21) is satisfied. Then ST is a negative

definite trace class operator satisfying

LISS 39-SOC - 10/9/89 - 16



ST - -2TU 2(S

S~.=(28)

The eigenvalues X nT), n = 1,2,..... of ST are bounded by

-1 + a0  An(T) O. n = 1.2..... (29)

where a0 is the constant of (11).

The capacity of a mismatched Gaussian channel is given in [3]. That

result can be directly applied for our SGC. We arrange the eigenvalues of ST

in increasing order: XI(T) X2 (T) .

TLemma 5 ([2],[3]): Suppose that (19) and (21) are satisifed. Then Cv(P) are

given by

T 1 l+n(T))-1] +P + L 1{P) = T nlog [('+An+ 2T n T)

if PT -O nAn(T). (30a)

T K X (T) + 0-1PT + K

TP) = I n log = K(l+X(TC P fn-1 " L ((;n:'"

if PT < -0 2-nXn(T), (30b)

where K K(T) = K(T.P) is the largest integer such that

K + 31
Si(T) + 0-pT kIK(T). (31)

i=l

Remark: We note that if the SGC is a matched one then ST = 0 and (30) is

reduced to

T (2%(P) = P/(20). P > 0. (32)

To examine the asymptotic behavior of the eigenvalues (Xn (T)) as T -,

we prepare a lemma. Let (Tn(T)) (T > 0) be a summable sequence and T(X),
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X C R, be an integrable function such that

0 Tn(T) N. 0 T(X) M.

for all n = 1.2,..... T > 0 and X C R, where M4 is a constant. Let F be a

bounded piecewise continuous function defined on [0,M] such that F is

continuous at x = 0 and F(O) = 0.

Lemma 6: (a) Suppose that r n(T)} and r satisfy

l log (+TT)
l m (1+T r(T) = log (1+aT(X))dX (33)

for every 0 < a aO . where a0 is a constant. Then it holds that

lim In F(Tn(T)) =- F(T(X))d. (34)
Tn n 2wjf

In particular,

lia T rn (T) = 2r1 T(X)kCL k = 1,2 ..... (35)
T-4-

(b) Suppose that

li1 1
lim Ilog(l + arr(T)) log(l + arCX))dN

for every 0 < a aO. Then

1. I I Tf ((T))dk. *k = 1.2.....
T-00I1 1 2r ( CX

Lemma 7: For any X C 3(P), it holds that

Trace Rv2TRX.TRV2T Trace ±TRXTRW2 (36)

or equivalently

E[ 1Xov T]  E 2 (37)
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Lemma 8: Let f be a continuous SDF such that f(X) = O(X- 2) as X - . Then for

any e > 0 there exists a rational SDF g(X) such that f(X) < g(X), X C R. and

f[gX) - f(X)]d) < e.

VI. PROOF OF THEOREMS

At first we prove Theorem 2.

Proof of (C.1) - (C.4): (C.1) follows from (a) of Lemma 2. (C.2) is clear from

the definition of the capacities. Let X E 3(P). Then

1 T 2
T E[IIXoIIWT] P +

for sufficiently large T. Therefore

T0T IT(X'Y) c P
-1

and we obtain (C.3). It is clear from Lemma 7 that T(P) C T{P).
C ,P).yielding

(C.4). (C.3') is clear from (C.3).

Proof of (C.5): For each a > 0 we define a process Q(a) = {Q (a)(t)} by

Q(a)(t) = vr U(t) + V(t). Then by Lemma 1 and (28), we have

IT(U.Qa) = -log(1 - ax (T)). (38)

where X n(T), n = 1,2..... are the eigenvalues of the operator ST defined by

(27). Hence, noting (12) and (13). the assumption (21) implies that

lim I I log(I - crX (T)) = - log(l - aa_(X))dX (39)
T-0Tnn 4j

for sufficiently small a. We can apply Lemma 6. replacing T n(T) and T(X) by

-A n(T) and -a_(X), respectively. At first we shall show (25) for
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P fa(X)dX. It follows from (35) that

27r -o
lim - X (T) = ZIo(X)cX P. (40)T-O T 2

Noting (11) and (29) we can apply (34) for F(x) = log(l-x) to obtain

1 1
lim T I log(l + An(T)) = log(l +- (41)

TSince Cv(P) is given by (30). using (40) and (41), we obtain

Cv(P) = im P) = rn ; Y'n log[(l+Xn(T))- + + n n(T)}
T-00 T-M

= ' f log[(l+a (A))-']dX + 2 + -L

-8

Secondarily we shall show (25) for P < : f a_(A)dX. It will be shown that

lir "K(T)(T ) = A(P). (42)T-,W

where K = K(T) is the constant in (30b) and A(P) is the constant given by

(17). To prove (42) we put

A =-lrm AK(T)(T). A = T-l-m XK (T).

There exists {Tn} such that T - o as n -, w and

lim \K(Tn)(Tn) = A.

Applying (34) for F(x) = 14.01 (X)-x (IB(X) is the indicator function of a

set B) we obtain

1K(T)
lim T I Xk(T) lim - Xk(Tn) (43)
n-i n k=1 n k;kn( n A

= .* ,(_X)d

D(A)
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where D(A) = {X; a_(X) A}. By definition we have

K(T)+l 
(4I. i (T) + T <(K(T)+I )K(Tl) I(T). (44)

i=1

From (31), (43) and (44). we obtain

lim T K(T r)K(Tn)(T) = lim T k(Tn) +n- (45)
n- n n n n- n k=l n

f _ a )d +

a(X)diL+
2D(A)

On the other hand, applying (34) for F(x) = 1 -. ] (x) we get

lir TL K(T)KTnTn= A lira T1 #{k; ) k A} (46)
n- n n n-*o n

I AIDA)I.

where #B denotes the cardinal number of a set B and IDI denotes the Lebesgue

measure of a set D. By (45) and (46) we know that A is a solution of (17).

Since (17) has the unique solution A(P). A is equal to A(P). In the same way

it is shown that A is also equal to A(P). Thus we get (42). In the same manner

as above, applying (34). we obtain the following equations.

lim KT =i 1 #Jk Dk(T)  ( AP)) 1DA(P))J. (47)T-4- T-4-

K(T)

lim T KI log(l+n (T)) = lim -- log(l+Xn(T)) (48)
T-4 n=1 T-w Xn(T)A(p)T

' fD log(1+o_(X))d.

lim 1 K(T) X(T) = lim 7 \k(T) a_(X)dX. (49)T-W k=l T- Xkk{T) A(P) D(A(P))
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It follows from (30), (47) - (49) and (17) that

Cv(P) - lim C (P)
T--w

I K(T) ID(A(P)) T K(T) p
=- l im  nI 1og(1+X (T)) + ID(A T.,)Ilim log I + K- 2 X Xk(T) +

T--, n~l n 4 T-.- Tk=1 1

-1 D log(1+a_(X))dX
4 D(A(P))

+ ID(A(P)) logI1 +  1 a(2)dX +
D(A(P))

I l
T D(A() +og A(P[)]dh = r(P).= fD(A(P))'oL + a()

Proof of (C.5'): Let Z(6) = {Z(E)(t)} (e > 0) be a stationary Gaussian process

with f(6)(X) = Ofv(X)(l+a(_)(X)) as the SDF and consider an SCC

Y(f)Ct) = X(t) + Z(6)(t). t E IR. (50)

From (9) it is clear that -fa(6)(X)dA < . Therefore, we can apply (C.5) to

get the capacity

sup IT(1 ye)) E (P)} (51)
'()(P) A limI sup (ITX ; CX0 ))(1

T T

of SC (50). Noting (23) it can be shown for every fixed P that

'(6)(P) = F(P) for sufficiently small e > 0. (52)

Since

f()(X) fZ(x}.

using Lemma I we can show that

IT(X.Y(E)) IT(X.Y)

so that
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On the other hand it can be shown that

lim IT(X.Y(F)) I T(XY ) .

And consequently, for every 6 > 0, we can show that there exists e0 > 0 such

that

The desired equation (25) follows from (52) - (54).

Prnof of Thezrem 1: (a) It follows from (C.1) - (C.5) that

1(p) w(P: Y) E W(P,) W(P-4) (55)

Cv,(P+e) = F(P+). e > 0.

Since F(P) is continuous in P. we obtain (22) from (55).

(b) can be rhown in the same way.

Proof of Theorem 3: I. (a) Let X E Pw(P). By definition T(X) 4 fX(X)/fw(x) is

bounded (0 T(N) M < -) and fT(N)dX 2rP. Denote by T n(T). n = 1,2

the eigenvalues of RW2 TRX rR?2T. Let {f(t) and C(t) be mutually

independent Gaussian stationary processes, which are independent of X and W,

with SDF's ff = af w Tand f C = fW(l-aT), where 0 < a < 1/14. And let f be the

SDF of the output process ri = {q(t)} of an SGC

n(t) = f(t) + C(t). t C R .

Then it is clear that

fr -f + f" =-fw F.

71~ E C W

Therefore, by (b) of Lenmna 2, we hnve

I f~ (I + 1 T(Ne)]X()
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We consider another SGC

0(t) = E(t) + W(t).

Since fC(X) fW(X) for all X E [R. using Lemma I we can show that

T, T(',O = 1 2 log(1 + aTn(T)). (57)

Using (a) of Lemma 2. (56) and (57) we obtain

f log(l+aT(X))dX r log ( l+ a T (T ))
T-4-

lir In l g ( l+a T ( T )) I( ,O
T-4-z

I FlogI + aT(N) dX.

Since a > 0 is arbitrary, in the same way as Lemma 6, we can derive

l1n i -n(T) -L T(X)dX (59)
T--mTnn 1

from (58). Noting (4) we know that (59) is equivalent to (26), and to (20).

(b) By Lemma 8. for any E > 0. there exists a rational SDF g(X) such that

0 < - _ g(X). X E R. and

f.._g) + a_(X)]dX < E. (1)

Let U = {U(t)j} be a Gaussian stationary process with SDF fW(X)g(X) and

independent of the process V. Let a > 0 be fixed and define processes W aa

{W (t)) and W = {W (t)} by

W (t) = aU(t) + V(t) and W(t) = aU(t) + V(t).

Since g is rational, the SDF fW.g of U belongs to F. Hence (aU.V) E A and

I - I -r-a 2
I(U .W) -. log I + d : log 1 + dX. '2)

a T f V 4+

Noting
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fu(X) -fw(X)(l a+(x))ao(x) = -fw(X)o_(X) fw(X)g(X) = f~CX),
U

we can show that

IT(UWa) ITU.Wa) T > 0. (3)

Using Lemna 2 we have

im I log I + af d = T log I a o dX. (4)
T T(UWa) +4w fj 4v I + +

It follows from (1) that

2 21r ag _ 1 [1 aa 1_]d; lg1 -a~l~ g o a a

l1 o + -lod1 log -- dX

+a+ f Ti . I

1Lw [ a 2(g+a_ ]  a2X

22
dX(g+a_)dX < T 5qT l l+,r _

Using (2) - (5) we have

I(UWa) l"m F IT(UWa) 1-1m ; IT(UWa) > a) 4,6
T-4- T-4-

Since e > 0 is arbitrary, (6) means that

(UW F i IT(UWa) T r
T-4-

implying (aU.V) E A.

II. If fW and f are rational, then a(X). a+(X) and a_(X) are

continuous. Noting that 0 < 8 = llA4rmfz(?)/fw(X) < , we can easily see that

a(x) = 0(X-2 ) as X - -. Consequently, a_(X) = O(X-2). Thus the assumptions of

(b) are satisfied and (21) holds.
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Proof of Theorem 4: Let X be an arbitrary stationary process belonging to

Aw(P), and define T and {T n(T)) as in the proof of Theorem 3. Since the first

inequality nf (58) is valid for all sufficiently small a > 0. using Lemma 6 we

obtain

2 r(X)dX i..m n(T) P. (60)

This means that X E VW(P).

APPENDIX

Proof of Lemma 3: Let us introduce some notations. Let S(P) be the class of

all SDF's f(X) which satisfy

f f(X)dX < 2rP/0

and J(f) be a functional defined by

J(f) = -L- log 1 + M)jL.

Then, noting (10) and (15), we have

r(P) = sup {J(f); f E S(P)}. (61)

We shall use the following inequalities,

log(l+x) x. x > -1. (62)

log I + T 2 Xz' 0 x Y < z. (63)

Suppose first that P f a (X)da. Denote by F(P) the RHS of (16a). If

f C S(P). then from (62)
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4wJ(f) = log + dX

R _IT+-;_ 7 aX)N 1
= R o T-- l- + log 1l + a-(\) + + -o~X)-J IdX

flog ITT7a, 73 1cLN + 17- (X) cL + ff X)dX

flog[l+- 10 (-?,dk + Jul (?A)cL + 27iP/0 = 47rT(P).

This inequality means that

r(P) P(P). (64)

From (9) and (10) we know that

f[(1+6) - min {(1+6), (l+a(X))}]dX =

for every 6 > 0. Hence, for every fixed 6 > 0, there exists a function u(X)

such that 0 u(N) 6. u(A) = 0 if a(X) k 6. and

fu(X)d = 2P + Na(X)d;. (65)

Define an SDF f by f(X) = u(X) - a_(X). Then f C S(P). Noting

u(X)/(l+r+(X)) u(X)/(1+6) and using (63) we obtain

4wj(f) = {[~l~() o~i+1a())dX

{Iog1~1~)]+ log(' +

f[log[j,-- l(,)) + lo + 5] ,) dX66

It follows from (61). (65) and (66) that

4wr(P) log I+ I 2r _(X)d;\. (67)
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Since 6 > 0 is arbitrary, (67) gives

F(P) F(P). (68)

The equation (16a) follows from (64) and (68). Next, we assume that P <

- O fa_()dX. Define sets B_ B_(P) and B+ B+ (P) in IR by B =

a(R) A(P)} and B+ = {; a(X) > A(P)). Note that a(X) = _(X) for X E B_ By

(17) it is clear that a SDF fo' defined by

(A(P) - a_(X). X C B-.
f°(X) = Q X B,

belongs to S(P). For any f in S(P).

If ffO = 2(P/6 (69)

and we wish to show that

fog I +j] 0f1~ij~

or

f 1 -,.a rfo-ao ,-,o ,-.
Butlog [1 + z~ 0 _ 0___+_

But + ) +  +B I+A(P)

++

fB + +AP + fB l+A(P) = f l+A(P) 0 (0

so that 4wJ(f) 4wJ(fo). It follows from (61) and (70) that r(P) = J(fo).

yielding (16b).

Proof of Lemma 4: The relation (28) is clear from (27) and (14). and implies

that ST is negative definite. The assumption (21) means that IT(UQ(a)) < W

where Q (a)(t) = aU(t) + V(t). Thus ST is a trace class operator by Lemma 1.

Noting (II) - (13) we know that
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fu(N)
f --X) = 1 - a0 , on (fw W 0) (71)
fv(X) a ) i

From (71). 2  
1 (l-aO)I, or

ST 2 (-1 + aO)I, (72)

where I is the identity operator. The relation (29) follows from (72).

Proof of Lemma 6: (a) At first we shall prove (35) by induction. We use the

following inequality.

K-i1 -l K
llog(l+x) - 1k- X 0 x 1, K 2.3. (73)

k=1

From (33) we know that (T-1 )2nlog(l+aTn(T)) is bounded for sufficiently large

T. Hence (T- )n T n(T) and, consequently. (T)- n T (T)2 are bounded. Therefore,

there exists constants 141 and T such that

1Tnn(T)2  M T IT 1 . (74)

For any fixed e > 0 there exists aI > 0 such that

0 (X)d - log(l+ar(X))da
a f j(X)2ca

S()2a < 2r, 0 < a a1 . (75)

Similarly, we know that there exists a2 > 0 such that

1
0 1 nTn(T) - T- Inlog(l+aTn(T))

a , T (T) 2 , 0 < aa 2 , T TI. (76)

Fix a number a3  min(ao.al.a2 ). It follows from (33) that
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(a3T) -1"nlOg(l+a 3 TnT)) - 2a3)-flog{ -a 3 (;k)dX I < F-, (77)

T T2 .

where T2 is a constant. From (75) - (77) we obtain

Ii-
S T (T) - ((X)d < 3r, T max(T1T

yielding (35) for k = 1. We now assume that (35) is true for k = 1. K-i.

Then,

1L I nTn(T) K - 2..' {(N)d~

ji K k-I{-) a1  . ... k -1j K-f)kdx) I
a k-1

I kL 1k ~Tk -1 rNkd j

a K ' k=1 k nT nn(I -

1K-1 (-I) k-ak k 1. .. _1 ( ))

a Klk=l ,k IL n n 27

The second term on the RHS of the inequality converges to zero as T - m. for

all a > 0. by the induction hypothesis. The first term is majorized by

K (-)k-lak k -1ji k (-1 a T o~ Tn()
TaK k= n k Ta

Ii K +Tk-+ a k

K k fT() K og( K+aT(X))dX
2aK k=l 2ira

+ I.LK. '1og(1S+a (T)) K flog(3+aT-(X))N I 9

The last of these three terms converges to zero as T for all a a0, by

(33). Using (73), the first two are majorized by

a . r()K+1 a MT(XKid .L
T(K+i) n n(T + 2( K+ Ij f

2M- a 2 Kl- a 2 3MKl'
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for a min(a1.a2 ). by (75) and (76). This proves (35). We turn now to the

proof of (34). For any fixed e > 0. there exist polynomials

K k K
P(X) = I ax Q(x) " Xbkx

k=1 k=l

such that P(x) F(x) Q(x). 0 x M 1. and fo{Q(r(x)) - P(T(x))}dx ( 6. It

is clear that

lim T.n P(T n(T)) lirn T2n F(T n(T)) lin T-1 InF(Tn(T)) (7S)
- T- T-40

lim T-InQ(r n(T)).
T-4w

Using (35) we get

lim T- IP(Tr nT)) = (2i)-lfP(r(A))dX K (2,)-lfF(-(X))dX - e. (79)

lir T-1 n Q(Tn(T)) (2w)-l Q(T(X))dX (27)-I/F(T(X))dX + e. (80)
T--Pn f

Since e, ) 0 is arbitrary. (34) follows from (78) - (80). Finally. (b) can be

shown in the same manner as (a).

Proof of Lemma 7: Since fV(X) = fW(X)(l+a+(X)) fW(X) for all X in 1R. we have

RV. RW. and consequently RVT RWT. Therefore. 2 1L
-T J T. .T .T

T. and finally we obtain

,-.TRX.TRV.T q. 1 T.4T T'W.TXT
-. - .L

2 2

= Trace RWTRX.TRW. T

The inequality (37) follows from (36) and (4).
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Proof of Lermma 8: There exist A > 0 and a > 0 such that a rational function

p(X), defined by

,(X) =a(A
2 +X 2)I (A = 3e-I)I

satisfies

f (A) 4P(X). JIl A.

Note that

Jp(X)dX = 3vA

Using Weierstrauss' theorem, we can show that there exists a rational SDF \(X)

satisfying f(X) 4(X) for Ixi I A. 0 < P(x) f(X) + e/(12A) for lI - 2A and

flxO 2A (X) < e/3. We define the function g(N) by g(X) = qp(X) + (P(X). Then we

can show that f(X) (X) g(X) for Jli A, f(X) v(X) g(X) for JII A

and

2 f[gx - f(X)]dX

J[,(x) - f(X)]dX + f (X)dX + fp(X)dX <
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